5,022 research outputs found

    On the Kinetic Roughening in Polymer Film Growth by Vapor Deposition

    Full text link
    This is a Comment on a recent publication: Y.-P. Zhao et al., Phys. Rev. Lett. 85, 3229 (2000). In the Letter, the authors report on an experimental investigation of polymeric (p-xylene) thin film growth and propose a new universality class not previously known. Here, we point out that the critical exponents reported in the Letter are consistent with the critical exponents of Das Sarma-Tamborenea growth model.Comment: 2 pages, 1 figure include

    Phase Transitions in Confined Antiferromagnets

    Full text link
    Confinement effects on the phase transitions in antiferromagnets are studied as a function of the surface coupling v and the surface field h for bcc(110) films. Unusual topologies for the phase diagram are attained for particular combinations of v and h. It is shown that some of the characteristics of the finite-temperature behavior of the system are driven by its low-temperature properties and consequently can be explained in terms of a ground-state analysis. Cluster variation free energies are used for the investigation of the finite temperature behavior.Comment: 4 pages, 2 figures, Conference proceedings (SLAFES-XV), Phys. Stat. Sol.(b), in pres

    Transport properties of diluted magnetic semiconductors: Dynamical mean field theory and Boltzmann theory

    Full text link
    The transport properties of diluted magnetic semiconductors (DMS) are calculated using dynamical mean field theory (DMFT) and Boltzmann transport theory. Within DMFT we study the density of states and the dc-resistivity, which are strongly parameter dependent such as temperature, doping, density of the carriers, and the strength of the carrier-local impurity spin exchange coupling. Characteristic qualitative features are found distinguishing weak, intermediate, and strong carrier-spin coupling and allowing quantitative determination of important parameters defining the underlying ferromagnetic mechanism. We find that spin-disorder scattering, formation of bound state, and the population of the minority spin band are all operational in DMFT in different parameter range. We also develop a complementary Boltzmann transport theory for scattering by screened ionized impurities. The difference in the screening properties between paramagnetic (T>TcT>T_c) and ferromagnetic (T<TcT<T_c) states gives rise to the temperature dependence (increase or decrease) of resistivity, depending on the carrier density, as the system goes from the paramagnetic phase to the ferromagnetic phase. The metallic behavior below TcT_c for optimally doped DMS samples can be explained in the Boltzmann theory by temperature dependent screening and thermal change of carrier spin polarization.Comment: 15 pages, 15 figure

    Fast Distributed PageRank Computation

    Full text link
    Over the last decade, PageRank has gained importance in a wide range of applications and domains, ever since it first proved to be effective in determining node importance in large graphs (and was a pioneering idea behind Google's search engine). In distributed computing alone, PageRank vector, or more generally random walk based quantities have been used for several different applications ranging from determining important nodes, load balancing, search, and identifying connectivity structures. Surprisingly, however, there has been little work towards designing provably efficient fully-distributed algorithms for computing PageRank. The difficulty is that traditional matrix-vector multiplication style iterative methods may not always adapt well to the distributed setting owing to communication bandwidth restrictions and convergence rates. In this paper, we present fast random walk-based distributed algorithms for computing PageRanks in general graphs and prove strong bounds on the round complexity. We first present a distributed algorithm that takes O\big(\log n/\eps \big) rounds with high probability on any graph (directed or undirected), where nn is the network size and \eps is the reset probability used in the PageRank computation (typically \eps is a fixed constant). We then present a faster algorithm that takes O\big(\sqrt{\log n}/\eps \big) rounds in undirected graphs. Both of the above algorithms are scalable, as each node sends only small (\polylog n) number of bits over each edge per round. To the best of our knowledge, these are the first fully distributed algorithms for computing PageRank vector with provably efficient running time.Comment: 14 page
    • …
    corecore